矩阵

矩阵(Matrix)本意是子宫、控制中心的母体、孕育生命的地方。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。

宁夏日报报业集团全媒体矩阵又添新成员 π7全球首发 云度全矩阵产品演绎“新π生活” 矩阵营销引发全民娱乐狂潮宝来缘何玩得这么666? 广汽传祺高端汽车矩阵将再添新成员,向SUV各细分市场发起全面攻势 一品速递|名爵GS升级上市,强化上汽互联网汽车矩阵(图) 名爵GS互联网版上市俞经民谈智能化矩阵(图)

基本资料

矩阵(Matrix)本意是子宫、控制中心的母体、孕育生命的地方。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。 中文名称矩阵 外文名称Matrix 意思: 指纵横排列的二维数据表格 拼音: juzhen

历史

  矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。[1]矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦(F.Eisenstein)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词。[2]英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的。[1]1854年时法国数学家埃尔米特(C.Hermite)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具。[3]矩阵的概念最早在1922年见于中文。1922年,程廷熙在一篇介绍文章中将矩阵译为“纵横阵”。1925年,科学名词审查会算学名词审查组在《科学》第十卷第四期刊登的审定名词表中,矩阵被翻译为“矩阵式”,方块矩阵翻译为“方阵式”,而各类矩阵如“正交矩阵”、“伴随矩阵”中的“矩阵”则被翻译为“方阵”。1935年,中国数学会审查后,中华民国教育部审定的《数学名词》(并“通令全国各院校一律遵用,以昭划一”)中,“矩阵”作为译名首次出现。1938年,曹惠群在接受科学名词审查会委托就数学名词加以校订的《算学名词汇编》中,认为应当的译名是“长方阵”。中华人民共和国成立后编订的《数学名词》中,则将译名定为“(矩)阵”。1993年,中国自然科学名词审定委员会公布的《数学名词》中,“矩阵”被定为正式译名,并沿用至今。

用途

  矩阵的一个重要用途是解线性方程组。线性方程组中未知量的系数可以排成一个矩阵,加上常数项,则称为增广矩阵。另一个重要用途是表示线性变换,即是诸如f(x) 4x之类的线性函数的推广[2]。设定基底后,某个向量v可以表示为m×1的矩阵,而线性变换f可以表示为行数为m的矩阵A,使得经过变换后得到的向量f(v)可以表示成Av的形式。矩阵的特征值和特征向量可以揭示线性变换的深层特性。[4]

符号

  以下是一个 4 × 3 矩阵:某矩阵 A 的第 i 行第 j 列,或 i,j位,通常记为 A[i,j] 或 Ai,j。在上述例子中 A[2,3]=7。此外 A = (aij),意为 A[i,j] = aij 对于所有 i 及 j,常见于数学著作中。

特殊类别

  [5]对称矩阵是相对其主对角线(由左上至右下)对称, 即是 ai,j=aj,i。埃尔米特矩阵(或自共轭矩阵)是相对其主对角线以复共轭方式对称, 即是 ai,j=a*j,i。注:一般来说对称矩阵是对实矩阵而言,埃尔米特矩阵是对复矩阵而言。斜对称矩阵是其转置矩阵等于自身的加法逆元,即是aii=0,ai,j=-aj,i(i≠j)。特普利茨矩阵在任意对角线上所有元素相对, 是 ai,j=ai+1,j+1。随机矩阵所有列都是概率向量, 用于马尔可夫链。  注:以上定义均是对方阵而言。此外,还有对角矩阵,单位矩阵,条带矩阵。对角矩阵是仅在它的主对角线上有元素而其他位置上的元素全为零(即aij=0或i≠j)的矩阵。如图为nXn的对角矩阵:类似的是单位矩阵,但位于主对角线上的元素都是1,即a1=a2=......=an=1条带矩阵是指与主对角线平行的位置上有非零元素而其他位置的元素全为零的矩阵。

运算

  矩阵的最基本运算包括矩阵加(减)法,数乘和转置运算。被称为“矩阵加法”、“数乘”和“转置”的运算不止一种。[4]给出 m×n 矩阵 A 和 B,可定义它们的和 A + B 为一 m×n 矩阵,等 i,j 项为 (A + B)[i, j] = A[i, j] + B[i, j]。举例:另类加法可见于矩阵加法。若给出一矩阵 A 及一数字 c,可定义标量积 cA,其中 (cA)[i, j] = cA[i, j]。 例如这两种运算令 M(m, n, R) 成为一实数线性空间,维数是mn.若一矩阵的列数与另一矩阵的行数相等,则可定义这两个矩阵的乘积。如 A 是 m×n 矩阵和 B 是 n×p矩阵,它们是乘积 AB 是一个 m×p 矩阵,其中(AB)[i, j] = A[i, 1] * B[1, j] + A[i, 2] * B[2, j] + ... + A[i, n] * B[n, j] 对所有 i 及 j。例如此乘法有如下性质:(AB)C = A(BC) 对所有 k×m 矩阵 A, m×n 矩阵 B 及 n×p 矩阵 C ("结合律").(A + B)C = AC + BC 对所有 m×n 矩阵 A 及 B 和 n×k 矩阵 C ("分配律")。C(A + B) = CA + CB 对所有 m×n 矩阵 A 及 B 和 k×m 矩阵 C ("分配律")。要注意的是:可置换性不一定成立,即有矩阵 A 及 B 使得 AB ≠ BA。对其他特殊乘法,见矩阵乘法。

其他性质

  线性变换,转置。矩阵是线性变换的便利表达法,皆因矩阵乘法与及线性变换的合成有以下的连系:以 Rn 表示 n×1 矩阵(即长度为n的矢量)。对每个线性变换 f : Rn - Rm 都存在唯一 m×n 矩阵 A 使得 f(x) = Ax 对所有 x in; Rn。 这矩阵 A "代表了" 线性变换 f。 今另有 k×m 矩阵 B 代表线性变换 g : Rm - Rk,则矩阵积 BA 代表了线性变换 g o f。矩阵 A 代表的线性代数的映像的维数称为 A 的矩阵秩。矩阵秩亦是 A 的行(或列)生成空间的维数。m×n矩阵 A 的转置是由行列交换角式生成的 n×m 矩阵 Atr (亦纪作 AT 或 tA),即 Atr[i, j] = A[j, i] 对所有 i and j。若 A 代表某一线性变换则 Atr 表示其对偶算子。转置有以下特性:(A + B)tr = Atr + Btr,(AB)tr = BtrAtr。注记矩阵可看成二阶张量, 因此张量可以认为是矩阵和向量的一种自然推广。

分类

  环上的若用一个环R去代替数域F,则可定义R上的矩阵及其运算,而且上述有关数域F上的内容,绝大部分都可以推广到R上,尤其当R是一个有单位元素1的交换环,甚至是一个域时,则上述的全部内容可以推广到R上。R是一个域或复数域F上的多项式环F【λ】的情形最为有用。若A=(αij)是复数域F上的一个n阶矩阵,I是n阶单位矩阵,则A、I以及λI-A都可视为多项式环F【λ】上的n阶矩阵 称为A的特征矩阵。其行列式|λI-A|是F【λ】中的一个首项系数为1的n次多项(-1)nb0,其中bn-1恰为A的迹数,b0恰为|A|,?(λ)=|λI-A|称为A的特征多项式,其根称为A的特征值或特征根。λ0为A的一个特征值,必要而且只要有F上非零的n元列向量ξ即n行1列的矩阵,使λ0ξ=Aξ。此ξ称为A的属于λ0的一个特征向量。A的属于不同特征值的特征向量,恒在F上线性无关。对于F【λ】中任意一个m次多项式,可以用F上任意一个n阶矩阵A去代替λ而引出一个n阶矩,其中I为n阶单位矩阵。所谓凯莱-哈密顿定理,即如果?(λ)是F上n阶矩阵A的特征多项式时,那么恒有?(A)=On,其中On为n阶零矩阵。由此可知,对于F上任意n阶矩阵A,必存在唯一的首项系数为1的多项式φ(λ)使φ(A)=On。对于任意的多项式g(λ),g(A)=On必要而且只要φ(λ)|g(λ)(即φ(λ)能整除g(λ))。此φ(λ)就称为A的最小多项式。

等价

  对矩阵A的行与列或仅对行或仅对列施以若干次初等变换而得到矩阵B,称为A等价于B,记为A≌B。。矩阵的等价是在讨论一个向量空间到另一个向量空间的线性变换的各种矩阵表示问题中产生的。所谓矩阵的初等变换,是指以下的任何一种变换:①用F中任意的一个不为零的元素α去乘矩阵的第i行(列);②把矩阵的第i行(列)的b倍加于第j行(列),其中b为F中任意元素;③互换矩阵的第i与第j行(列),并分别称为第一、第二、第三种初等变换。对F上的单位矩阵I进行一次初等变换后所得出的矩阵,称为初等矩阵。一种初等变换对应于一种初等矩阵。对矩阵A的行施以某种初等变换的结果,恰等于用相应的初等矩阵去左乘A;对A的列施以某种初等变换的结果,恰等于用相应的初等矩阵去右乘A。初等矩阵恒为可逆的,且其逆矩阵仍是同一种初等矩阵,因此初等矩阵的积恒为非奇异矩阵。由此可知,等价矩阵的秩数相同,或者说初等变换不改变矩阵的秩数。于是,经若干次初等变换后,必可将每个秩数为r的矩阵的左上角化为r阶单位矩阵,而其他位置都化为0。n阶非奇异矩阵恒等价于n阶单位矩阵,恒可表为若干个初等矩阵之积。因此,A≌B必要而且只要有非奇异矩阵P、Q使PAQ=B。多项式环F【λ】上的矩,简称为λ矩阵。在F【λ】上也可定义行列式。A(λ)的秩数定义为A(λ)的最大非零子式的阶数。对λ矩阵也可进行初等变换,在第一种初等变换中只能使用F中非零的α,而不能用F【λ】中非零的?(λ);第二种初等变换中则可用F【λ】中任意的g(λ)去代替b。也可以定义可逆性,对于λ矩阵P(λ)若有λ矩阵K(λ)使P(λ)K(λ)=K(λ)P(λ)=I,则称λ矩阵P(λ)是可逆的,λ矩阵K(λ)则称为P(λ)的逆矩阵。也可以定义λ矩阵的等价。秩数为r的λ矩阵A(λ)必等价于所谓A(λ)的法式即λ矩阵: ,这里的诸φi(λ)均由A(λ)惟一确定,且φ1(λ)|φ2(λ)|…|φr(λ),首项系数均为1。由此可知,一个n阶λ矩阵P(λ)是可逆的,必要而且只要P(λ)为若干个与λ矩阵的初等变换相应的初等矩阵的积;必要而且只要其行列式为F中的非零元素。两个λ矩阵A(λ)m×n,B(λ)m×n是等价的,必要而且只要有可逆λ矩阵P(λ)、Q(λ)使P(λ)A(λ)Q(λ)=B(λ)。A(λ)的法式中的诸多项式φi(λ),都称为A(λ)的不变因子,且可作如下分解: 式中诸ej(λ)是F【λ】中首项系数为1的互不相同的既约多项式;nij为非负整数,且最后一行中的n1r,n2r,…,nkr均非零,并。这些因,除去指数nij=0者,都称为A(λ)的初等因子 必要而且只要它们的法式相同;必要而且只要它们的全部不变因子一致;必要而且只要它们的秩数与全部初等因子一致。

相似

  对于域F上两个n阶矩阵A、B,若有非奇异矩阵P,使P-1AP=B,则称为A相似于B,记为A~B。矩阵之间的这个关系,具有反身性、对称性和传递性,所以它是一种等价关系。矩阵的相似是在讨论一个向量空间到自身之间的线性变换的各种矩阵表示问题中产生的。域F上两个n阶矩阵A与B相似,必要而且只要特征矩阵(λI-A)与(λI-B)在F【λ】上等价。λI-A的不变因子与初等因子,分别称为A的不变因子与初等因子。特征矩阵λI-A的秩数,即A的阶数n。因此,在F上的两个n阶矩阵A与B相似,必要而且只要它们的初等因子一致。当F是一个代数封闭域时,F【λ】中的首项系数为1的既约多项式只能是形如(λ-α)的一次式,所以此时F上的一个n阶矩阵A的全部初等因子必为如下的一些多项式: 式中α1,α2,…,αk互不相同,k≥1;所有指数Л1,Л2,…,Лr,…;n1,n2,…,nt之和为n。对于每个形的多项式,可以惟一确定一个所谓若尔当小块,即h阶矩阵: ,它只有一个初等因子,而且就。设上述n阶矩阵A的全部初等因子的若尔当小块分别是J1,J2,…,Jυ,v=r+s+…+t,用这v个小块来合成一个n阶对角分块矩阵。 于是A~J,而且除诸小块的次序外,J是由A所惟一确定的。J称为A的若尔当标准形式。  由此可知,只要找出A的全部初等因子即可求得A的若尔当标准形式。要找出A的全部初等因子有一个较简捷的方法,即不必把λI-A化成法式,而先把λI-A通过初等变换化成对角矩阵,其对角线上的全部多项式不一定恰是A的全部不变因子,只要将其中每个非常数多项式的首项系数化为 1,再分解因子,即可象从不变因子求出初等因子那样得出A的全部初等因子。设N是任意域F上的一个方阵,若有正整数m使Nm=0,则N称为一个幂零矩阵。例如,把上述若尔当小块中的α全换成0得出的h阶矩阵N,就是一个幂零矩阵,因为Nh=0。若F上的方阵K具有性质K2=K,则称K为一个幂等矩阵。例如单位矩阵就是一个幂等矩阵。由直接计算可知,对F上任意多项式?(λ),有。因此,与幂零矩阵相似的矩阵仍为幂零矩阵;与幂等矩阵相似的矩阵仍为幂等矩阵。实数域上一个非奇异矩阵T若具有性质T┡=T-1(T┡是T 的转置矩阵),则称为一个正交矩阵。例如解析几何里直角坐标旋转公式的系数矩阵就是正交矩阵。一个正交矩阵的转置矩阵(即其逆矩阵)仍为正交矩阵;两个同阶的正交矩阵的积仍为正交矩阵。实数域上任意一个对称矩阵A,恒可通过适当的正交矩阵T而相似于对角矩阵D,即D=T-1AT=T┡AT,且D 的对角线上的实数就是A的全部特征根。复数域上的一个非奇异矩阵U若具有性质ū┡=U-1或U┡=(ū)-1(ū ┡为U 的共轭转置矩阵),就称为一个酉矩阵。一个酉矩阵的共轭矩阵仍为酉矩阵;一个酉矩阵的转置矩阵仍为酉矩阵;一个酉矩阵的共轭转置矩阵(即其逆矩阵)仍为酉矩阵;两个同阶的酉矩阵的积仍为酉矩阵。复数域上凡满足的矩阵A,称为埃尔米特矩阵。实对称矩阵作为复数域上的矩阵时,就是埃尔米特矩阵。任意一个埃尔米特矩阵A,恒可通过适当的酉矩阵U 而相似于实对角矩阵D,即D =U┡Aū,且D 的对角线元素恰为A 的全部特征根。一个正交矩阵作为复数域上的矩阵时,也是一个酉矩阵。

合同

  当矩阵A经过若干套初等变换而化为矩阵B时,则称为A合同于B,记。所以它是一种等价关系。矩阵的合同是在讨论用(对称)矩阵表示二次型的问题中产生的。所谓一套初等变换,是指将某一种初等变换首先对一个矩阵的第i列(行)施行而得一矩阵,然后再对此所得矩阵的第i行(列)施行又得一矩阵。第一、二、三套初等交换,分别由第一、二、三种初等变换组成。两个n阶矩阵A与B合同,必要而且只要有非奇异矩阵P使P┡AP=B。与对称矩阵合同之矩阵仍为对称矩阵。每个秩数为r的实对称矩阵A恒合同于一个对角矩阵,其对角线上有p个1与q个-1;其他的对角线元素均为0,这里p≥0,q≥0,p+q=r,而且p与q都是由A所惟一确定的。实对称矩阵的特征根恒为实数。实对称矩阵A能合同于而又相似于一个对角矩阵,其对角线元素恰为A的全部特征根。与单位矩阵合同的实对称矩阵,称为正定矩阵。  对于n阶实对称矩阵A,以下命题是等价的:A为正定矩阵;有非奇异矩阵Q;A的所有主子式均为正实数;A的所有i阶主子式之和Si均为正实数(i=1,A所相应的二次型为正定型。对一个复数方阵施以第一套初等变换,就是用不为零的α乘i行,再用ā乘第i列;施以第二套初等变换,就是把第i行的b倍加于第j行,再用第i列的姼倍加于第j列;施以第三套初等变换仍然是互换第i和第j两行,再互换第i和第j两列。若对复数方阵A施以上述的若干套初等变换而得方阵B,则称为A能h合同于B。矩阵的h合同关系具有反身性、对称性和传递性,所以它是一种等价关系。两个n阶复数矩阵A与B是h合同的,必要而且只要有非奇异矩阵P使P′A圴 =B。与埃尔米特矩阵是h合同的矩阵仍为埃尔米特矩阵。每个埃尔米特矩阵A恒h合同于一个对角矩阵,其对角线上有p个1与q个-1,其他元素均为0,这里p≥0,q≥0,p+q为A的秩数,而且p、q均是由A所惟一确定的。埃尔米特矩阵的特征根恒为实数。埃尔米特矩阵A不仅恒能h合同于一个对角矩阵,而且必能相似于一个对角矩阵,此时其对角线元素恰为A的全部特征根。与单位矩阵是h合同的埃尔米特矩阵,称为正定埃尔米特矩阵。对于一个n阶埃尔米特矩阵A,以下命题是等价的:A为正定埃尔米特矩阵;有非奇异矩阵Q;A的所有主子式为正实数;A的所有i阶主子式之和Si,均为正实数(i=1,;A所相应的埃尔米特二次型是正定埃尔米特二次型。复数域上的一个方阵A若满足A凴′=凴′A(即A与凴′可交换)就称A为正规矩阵。实对称矩阵、埃尔米特矩阵、正交矩阵与酉矩阵都是正规矩阵。每个复数方阵A均可表为A=h1+ih2,其中h1与h2均为由A所惟一确定的埃尔米特矩阵,此时A为正规矩阵必要而且只要h1与h2可交换。正规矩阵A与凴′有相同的特征向量。一个复数方阵A为正规矩阵,必要而且只要有酉矩阵U使U-1AU 为对角矩阵。矩阵的理论起源,可追溯到18世纪,见于著作则是在19世纪。A.凯莱在1858年引进矩阵为一个正方形的排列表,且能进行加法与乘法运算,于是人们就把A.凯莱作为矩阵论的创始人。然而在此之前,C.F.高斯在1801年与F.G.M.艾森斯坦在1844~1852年就早已先后把一个线性替换(即线性变换)的全部系数作为一个整体,并用一个字母来表示。艾森斯坦还强调乘法的次序的重要性,指出ST与TS未必相同。与艾森斯坦同时的C.埃尔米特以及稍后的E.N.拉盖尔和F.G.弗罗贝尼乌斯也都先后发展了线性替换的符号代数。弗罗贝尼乌斯较丰富的工作于1877年发表在最早的数学杂志之一的《克雷尔杂志》上。矩阵的相似标准形,矩阵的合同标准形,矩阵的求逆,矩阵的特征值与广义特征值等是矩阵论的经典内容;矩阵方程论,矩阵分解论,广义逆矩阵等是矩阵论的现代内容。矩阵及其理论在现代科学技术的各个领域都有广泛的应用。

物理应用

?线性变换及对称

  线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。内含泡利矩阵及更通用的狄拉克矩阵的具体表示,在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。描述最轻的三种夸克时,需要用到一种内含特殊酉群SU(3)的群论表示;物理学家在计算时会用一种更简便的矩阵表示,叫盖尔曼矩阵,这种矩阵也被用作SU(3)规范群,而强核力的现代描述──量子色动力学的基础正是SU(3)。还有卡比博-小林-益川矩阵(CKM矩阵):在弱相互作用中重要的基本夸克态,与指定粒子间不同质量的夸克态不一样,但两者却是成线性关系,而CKM矩阵所表达的就是这一点。

量子态的线性组合

  1925年海森堡提出第一个量子力学模型时,使用了无限维矩阵来表示理论中作用在量子态上的算子。这种做法在矩阵力学中也能见到。例如密度矩阵就是用来刻画量子系统中“纯”量子态的线性组合表示的“混合”量子态。  另一种矩阵是用来描述构成实验粒子物理基石的散射实验的重要工具。当粒子在加速器中发生碰撞,原本没有相互作用的粒子在高速运动中进入其它粒子的作用区,动量改变,形成一系列新的粒子。这种碰撞可以解释为结果粒子状态和入射粒子状态线性组合的标量积。其中的线性组合可以表达为一个矩阵,称为S矩阵,其中记录了所有可能的粒子间相互作用。

简正模式

  矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式),称为系统的简正模式。这种求解方式在研究分子内部动力学模式时十分重要:系统内部由化学键结合的原子的振动可以表示成简正振动模式的叠加。描述力学振动或电路振荡时,也需要使用简正模式求解。

几何光学

  在几何光学里,可以找到很多需要用到矩阵的地方。几何光学是一种忽略了光波波动性的近似理论,这理论的模型将光线视为几何射线。采用近轴近似(英语:paraxial approximation),假若光线与光轴之间的夹角很小,则透镜或反射元件对于光线的作用,可以表达为2×2矩阵与向量的乘积。这向量的两个分量是光线的几何性质(光线的斜率、光线跟光轴之间在主平面(英语:principal plane)的垂直距离)。这矩阵称为光线传输矩阵(英语:ray transfer matrix),内中元素编码了光学元件的性质。对于折射,这矩阵又细分为两种:“折射矩阵”与“平移矩阵”。折射矩阵描述光线遇到透镜的折射行为。平移矩阵描述光线从一个主平面传播到另一个主平面的平移行为。由一系列透镜或反射元件组成的光学系统,可以很简单地以对应的矩阵组合来描述其光线传播路径。

电子

  在电子学里,传统的网目分析(英语:mesh analysis)或节点分析会获得一个线性方程组,这可以以矩阵来表示与计算。

矩阵图法

  矩阵图法就是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法,它是一种通过多因素综合思考,探索问题的好方法。在复杂的质量问题中,往往存在许多成对的质量因素。将这些成对因素找出来,分别排列成行和列,其交点就是其相互关联的程度,在此基础上再找出存在的问题及问题的形态,从而找到解决问题的思路。矩阵图的形式如图所示,A为某一个因素群,a1、a2、a3、a4、…是属于A这个因素群的具体因素,将它们排列成行;B为另一个因素群,b1、b2、b3、b4、…为属于B这个因素群的具体因素,将它们排列成列;行和列的交点表示A和B各因素之间的关系。按照交点上行和列因素是否相关联及其关联程度的大小,可以探索问题的所在和问题的形态,也可以从中得到解决问题的启示等。质量管理中所使用的矩阵图,其成对因素往往是要着重分析的质量问题的两个侧面,如生产过程中出现了不合格品时,着重需要分析不合格的现象和不合格的原因之间的关系,为此,需要把所有缺陷形式和造成这些缺陷的原因都罗列出来,逐一分析具体现象与具体原因之间的关系,这些具体现象和具体原因分别构成矩阵图中的行元素和列元素。矩阵图的最大优点在于,寻找对应元素的交点很方便,而且不遗漏,显示对应元素的关系也很清楚。矩阵图法还具有以下几个点:  ①可用于分析成对的影响因素  ②因素之间的关系清晰明了,便于确定重点  ③便于与系统图结合使用。

用途

  用矩阵图法的用途十分广泛.在质量管理中,常用矩阵图法解决以矩阵下问题:  ①把系列产品的硬件功能和软件功能相对应,并要从中找出研制新产品或改进老产品的切入点  ②明确应保证的产品质量特性及其与管理机构或保证部门的关系,使质量保证体制更可靠  ③明确产品的质量特性与试验测定项目、试验测定仪器之间的关系,力求强化质量评价体制或使之提高效率  ④当生产工序中存在多种不良现象,且它们具有若干个共同的原因时,希望搞清这些不良现象及其产生原因的相互关系,进而把这些不良现象一举消除  ⑤在进行多变量分析、研究从何处入手以及以什么方式收集数据。

类型

  矩阵图法在应用上的一个重要特征,就是把应该分析的对象表示在适当的矩阵图上。因此,可以把若干种矩阵图进行分类,表示出他们的形状,按对象选择并灵活运用适当的矩阵图形。常见的矩阵图有以下几种:  (1)L型矩阵图。是把一对现象用以矩阵的行和列排列的二元表的形式来表达的一种矩阵图,它适用于若干目的与手段的对应关系,或若干结果和原因之间的关系。  (2)T型矩阵图。是A、B两因素的L型矩阵和A、c两因素的L型矩阵图的组合矩阵图,这种矩阵图可以用于分析质量问题中“不良现象一原因一工序”之间的关系,也可以用于分析探索材料新用途的“材料成分一特性一用途”之间酌关系等。(3)Y型矩阵图。是把A因素与B因素、B因素与C因素、C因素与A因素三个L型矩阵图组合在一起而形成的矩阵图。  (4)X型矩阵图。是把A因素与B因素、B因素与C因素、C因素与D因素、D因素与A因素四个L型矩阵图组合而形成的矩阵图,这种矩阵图表示A和B、D,D和 A、C,C和B、D,D和A、C这四对因素间的相互关系,如“管理机能一管理项目一输入信息一输出信息”就属于这种类型。  (5)C型矩阵图。是以A、B、C三因素为边做出的六面体,其特征是以A、B、c三因素所确定的三维空间上的点为“着眼点”。

制作

  制作矩阵图一般要遵循以下几个步骤:  ①列出质量因素:  ②把成对对因素排列成行和列,表示其对应关系  ③选择合适的矩阵图类型  ④在成对因素交点处表示其关系程度,一般凭经验进行定性判断,可分为三种:关系密切、关系较密切、关系一般(或可能有关系),并用不同符号表示  ⑤根据关系程度确定必须控制的重点因素  ⑥针对重点因素作对策表。

创建公式

  Microsoft Word可以创建矩阵公式,以Word2010软件为例介绍操作方法:第1步,打开Word2010文档窗口,切换到“插入”功能区。在“符号”分组中单击“公式”按钮(非“公式”下拉三角按钮)。第2步,在Word2010文档中创建一个空白公式框架,在“公式工具/设计”功能区中,单击“结构”分组中的“矩阵”按钮。在打开的矩阵结构列表中包括“空矩阵”、“点”、“单位矩阵”、“括号矩阵”和“稀疏矩阵”等类型,选择合适的矩阵结构形式。第3步,在空白公式框架中将添加矩阵结构,单击矩阵占位符框输入具体数值即可。[6]
  参考资料:  1.克莱因 2002,?第33章第4节
  2.J. J. Sylvester. "Additions to the articles in the September number of this journal, "On a new class of theorems," and on Pascal's theorem," [J] The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, 1850, 37:363-370  3.董可荣 2007,?第3节4.Brown 1991,?Definition I.2.1 (addition), Definition I.2.  4 (scalar multiplication), and Definition I.2.33 (transpose)  5.R语言中的矩阵操作 .中国Linux联盟 [引用日期2012-11-20] .  6.在Word2010中创建包含矩阵的公式 .

矩阵 - 相关资讯

宁夏日报报业集团全媒体矩阵又添新成员 宁夏日报报业集团全媒体矩阵又添新成员

  宁夏新闻网讯在宁夏两会即将召开之际,宁夏日报报业集团全媒体矩阵又添新成员,“掌上宁夏新闻网、宁夏新闻网微信小程序”正...

π7全球首发 云度全矩阵产品演绎“新π生活” π7全球首发 云度全矩阵产品演绎“新π生活”

4月25日,云度7全球首发暨云度全矩阵登陆北京国际车展,为现场观众带来了一场新生活 如7而至的汽车新生活盛宴。作为云度全...

矩阵营销引发全民娱乐狂潮宝来缘何玩得这么666? 矩阵营销引发全民娱乐狂潮宝来缘何玩得这么666?

  原标题:矩阵营销引发全民娱乐狂潮 宝来缘何玩得这么666?  为了增加曝光率,汽车厂商从来没在营销手段上下功夫,随着...

广汽传祺高端汽车矩阵将再添新成员,向SUV各细分市场发起全面攻势 广汽传祺高端汽车矩阵将再添新成员,向SUV各细分市场发起全面攻势

  原标题:广汽传祺高端汽车矩阵将再添新成员,向SUV各细分市场发起全面攻势  汽车评价:今年上半年车市增速放缓,SUV...

一品速递|名爵GS升级上市,强化上汽互联网汽车矩阵(图) 一品速递|名爵GS升级上市,强化上汽互联网汽车矩阵(图)

  原标题:一品速递|名爵GS升级上市,强化上汽互联网汽车矩阵  互联网基因的注入,使得名爵GS互联网版同时拥有精微语音...

名爵GS互联网版上市俞经民谈智能化矩阵(图) 名爵GS互联网版上市俞经民谈智能化矩阵(图)

  原标题:名爵GS互联网版上市 俞经民谈智能化矩阵  上汽名爵为旗下SUV名爵锐腾新增互联网版本,8月9号晚在北京正式...

传祺半年劲销25万辆全矩阵领跑中国品牌(图) 传祺半年劲销25万辆全矩阵领跑中国品牌(图)

  2017上半年,中国汽车市场增速总体趋缓,中国品牌虽然在SUV领域占据领先优势,但受限于轿车市场的短板以及合资车企的...

看尚付强:未来互联网电视的矩阵式产业链竞争 看尚付强:未来互联网电视的矩阵式产业链竞争

四年前,互联网电视现身江湖,从此一改电视行业竞争全貌。一方是传统电视厂商以综合实力正面抗敌,另一方是外资电视企业用强大品...

微播易社交视频产品矩阵曝光 玩转短视频和直播 微播易社交视频产品矩阵曝光 玩转短视频和直播

在资本、媒体等纷纷涌向社交视频的背景下,短视频、直播在营销中的优势也不断被凸显出来:内容原生被接受度高、自带传播和互动性...

贵州省检察院成立新媒体工作室 “两微一端”矩阵粉丝近30万(图) 贵州省检察院成立新媒体工作室 “两微一端”矩阵粉丝近30万(图)

  多彩贵州网讯(本网记者 赵曌)7月4日,贵州省检察院新媒体工作室成立。今后将主要负责省检察院官方网站、微博、微信、新...

山西同煤焦煤一季度亏损 剥离包袱七大煤企矩阵变化 山西同煤焦煤一季度亏损 剥离包袱七大煤企矩阵变化

  山西力推省属国企主业“瘦身” 七大煤企矩阵生变   山西省属煤炭集团今年一...

山西力推省属国企 主业“瘦身” 七大煤企矩阵生变 山西力推省属国企 主业“瘦身” 七大煤企矩阵生变

摘要 山西省属煤炭集团今年一季度的财务报告让人大跌眼镜,煤炭行情火热,但几家营业收入达几百亿的煤炭...

名人人气榜

01 俞鸿儒 俞鸿儒 热度:106223
02 石零 石零 热度:55667
03 列宾 列宾 热度:54771
04 欧阳洛 欧阳洛 热度:54640
05 计然 计然 热度:54465
06 兵圣孙武 兵圣孙武 热度:53975
07 吴志扬 吴志扬 热度:53703
08 胡常 胡常 热度:53197

矩阵 - 相关图片

投稿