电解质

电解质是溶于水溶液中或在熔融状态下就能够导电(自身电离成阳离子与阴离子)的化合物。可分为强电解质和弱电解质。电解质不一定能导电,而只有在溶于水或熔融状态时电离出自由移动的离子后才能导电。离子化合物在水溶液中或熔化状态下能导电;某些共价化合物也能在水溶液中导电,但也存在固体电解质,其导电性来源于晶格中离子的迁移。

今日科技:AI发展出了自己的语言,电解质研究获重大突破! 【图】工学院郭少军课题组提出“蚁穴”结构固态电解质抑制锂枝晶新方法 【图】美科学家发明新型气态电解质 不畏极寒 美科学家发明新型气态电解质 不畏极寒 跑者补水不等于只喝水 更要注重电解质平衡 石墨烯已成往事 液态电解质成为汽车电池技术的有力方向

基本资料

电解质是溶于水溶液中或在熔融状态下就能够导电(自身电离成阳离子与阴离子)的化合物。可分为强电解质和弱电解质。电解质不一定能导电,而只有在溶于水或熔融状态时电离出自由移动的离子后才能导电 。离子化合物在水溶液中或熔化状态下能导电;某些共价化合物也能在水溶液中导电,但也存在固体电解质,其导电性来源于晶格中离子的迁移。 中文名称电解质 外文名称Electrolyte 属性:化合物 分类:强电解质、弱电解质

分类

  强电解质是在水溶液中或熔融状态中几乎完全发生电离的电解质,弱电解质是在水溶液中或熔融状态下不完全发生电离的电解质。强弱电解质导电的性质与物质的溶解度无关。

电解质

  一般有:强酸强碱,活泼金属氧化物和大多数盐,如:碳酸钙、硫酸铜。也有少部分盐不是电解质。

弱电解质

  (溶解的部分在水中只能部分电离的化合物,弱电解质是一些具有极性键的共价化合物)一般有:弱酸、弱碱,如;醋酸、一水合氨(NH3·H2O),以及少数盐,如:醋酸铅、氯化汞。另外,水是极弱电解质。

强弱因素

  决定强、弱电解质的因素较多,有时一种物质在某种情况下是强电解质,而在另一种情况下,又可以是弱电解质。下面从键型、键能、溶解度、浓度和溶剂等方面来讨论这些因素对电解质电离的影响。  (1)电解质的键型不同,电离程度就不同。已知典型的离子化合物,如强碱〔NaOH、KOH、Ba(OH)2〕、大部分盐类(NaCl、CaCl2等)以及强极性化合物(如HCl、H2SO4等),在极性水分子作用下能够全部电离,导电性很强,我们称这种在水溶液中能够完全电离的物质为强电解质。而弱极性键的共价化合物,如CH3COOH、HCN、NH3·H2O等,在水中仅部分电离,导电性较弱,我们称这种在水溶液中只能部分电离的物质为弱电解质。所以,从结构的观点来看,强、弱电解质的区分是由于键型的不同所引起的。但是,仅从键型来区分强、弱电解质是不全面的,即使强极性共价化合物也有属于弱电解质的情况,HF就是一例。因此,物质在溶液中存在离子的多少,还与其他因素有关。  (2)相同类型的共价化合物由于键能不同,电离程度也不同。例如,HF、HCl、HBr、HI就其键能来说是依次减小的,这可从它们的电负性之差或气体分子的偶极矩来说明。  从它们分子内核间距的依次增大,分子的键能依次减小来看,HF的键能最大,分子结合得最牢固,在水溶液中电离最困难。再加上HF分子之间由于形成氢键的缘故而有缔合作用,虽然在水分子的作用下一部分HF离子化,离解为H3O和F,但离解出来的F很快地又和HF结合成为HF2、H2F3、H3F4等离子。在1 mol/L HF溶液中,F仅占1%,HF2占10%,而大部分都是多分子聚合的离子:H2F3、H3F4……这样就使HF成为一种弱酸,而HCl、HBr、HI都是强酸。从HCl→HI,它们分子内的核间距依次增大,键能依次减小,所以它们的电离度逐渐略有所增大。但是,仅从键能大小来区分强、弱电解质也是片面的,有些键能较大的极性化合物也有属于强电解质的情况。例如,H-Cl的键能(431.3 kJ/mol)比H-S的键能(365.8 kJ/mol)大,在水溶液中HCl却比H2S容易电离。  (3)电解质的溶解度也直接影响着电解质溶液的导电能力。有些离子化合物,如BaSO4、CaF2等,尽管它们溶于水时全部电离,但它们的溶解度很小,使它们的水溶液的导电能力很弱,但它们在熔融状态时导电能力很强,因此仍属强电解质。  (4)电解质溶液的浓度不同,电离程度也不同。溶液越稀,电离度越大。因此,有人认为如盐酸和硫酸只有在稀溶液中才是强电解质,在浓溶液中,则是弱电解质。由蒸气压的测定知道10 mol/L的盐酸中有0.3%是共价分子,因此10 mol/L的盐酸中HCl是弱电解质。通常当溶质中以分子状态存在的部分少于千分之一时就可认为是强电解质,当然在这里强与弱之间是没有严格界限的。  (5)溶剂的性质也直接影响电解质的强弱。例如,对于离子化合物来说,水和其他极性溶剂的作用主要是削弱晶体中离子间的引力,使之解离。根据库仑定律,离子间的引力为:  式中k为静电力常量,Q1、Q2为离子的电量,r为离子间距离,ε为溶剂的介电常数。从上式可以看出,离子间引力与溶剂的介电常数成反比。水的介电常数ε=81,所以像LiCl、KCl这些离子化合物,在水里易于电离,表现出强电解质的性质。而乙醇和苯等介电常数较小(乙醇ε=27,苯ε=2),离子化合物在其中难于电离,表现出弱电解质的性质。  因此弱电解质和强电解质,并不是物质在本质上的一种分类,而是由于电解质在溶剂等不同条件下所造成的区别,彼此之间没有明显的界限。

电解原理

  电能转变为化学能的过程,即直流电通过电解槽,在电极-溶液界面上进行电化学反应的过程 。例如,水的电解,电解槽中阴极为铁板,阳极为镍板 ,电解液为氢氧化钠溶液。通电时,在外电场的作用下,电解液中的正、负离子分别向阴 、阳极迁移 ,离子在电极 - 溶液界面上进行电化学反应。在阴极上进行还原反应。  水的电解就是在外电场作用下将水分解为H2(g)和O2(g)。电解是一种非常强有力的促进氧化还原反应的手段,许多很难进行的氧化还原反应,都可以通过电解来实现。例如:可将熔融的氟化物在阳极上氧化成单质氟,熔融的锂盐在阴极上还原成金属锂。电解工业在国民经济中具有重要作用,许多有色金属和稀有金属的冶炼及金属的精炼,基本化工产品的制备,还有电镀、电抛光、阳极氧化等,都是通过电解实现的。

判断方法

  电解质和非电解质的区别:
  电解质  非电解质
  相同点  均为化合物
  不同点  水溶液或熔融状态能导电  水溶液和熔融状态都不能导电
  本质区别  在水溶液里或熔融状态下自身能发生电离  在水溶液里或熔融状态下自身不能发生电离
  所含物质类型  酸, 碱, 盐 , 活泼金属氧化物,水  非金属氧化物,非酸性气态化合物,部分有机物
  由物质结构识别电解质与非电解质是问题的本质。电解质包括离子型或强极性共价型化合物;非电解质包括弱极性或非极性共价化合物。电解质水溶液能够导电,是因电解质可以离解成离子。至于物质在水中能否电离,是由其结构决定的。  常见的酸、、盐都是电解质如:碳酸、硫酸、硝酸、磷酸、乙酸(醋酸)都是酸,氢氧化钡、一水合氨、氢氧化铜都是碱,碳酸钠、碳酸钙、碳酸氢钠、硫酸铜晶体都是盐,它们都是电解质。在上述两种情况下都不能导电的化合物称为非电解质,蔗糖、乙醇等都是非电解质(大多数的有机物都是非电解质)。  判断一些氧化是否为电解质,要具体分析。非金属氧化物,如SO2、SO3、P2O5、CO2等,它们是共价型化合物,液态时不导电,所以不是电解质。有些氧化物在水溶液中即便能导电,但也不是电解质。因为这些氧化物与水反应生成了新的能导电的物质,溶液中导电的不是原氧化物,如SO2本身不能电离,而它和水反应,生成亚硫酸,亚硫酸为电解质。金属氧化物,如Na2O,MgO,CaO等是离子化合物,它们在熔融状态下能够导电,因此是电解质。  大多数盐类是强电解质,少数的盐有形成共价键的倾向,电离度很小,属于弱电解质。例如,氯化汞、碘化镉等虽然也是由离子组成的,但是Hg和Cd容易被阴离子所极化,而Cl、I等又是容易极化的阴离子,由于阳、阴离子间的相互极化作用,电子云产生较大的变形,引起了键的性质的改变,它们的熔点和沸点不如离子晶体那样高。实验证明,HgCl2的水溶液几乎不导电,即使在很稀的溶液中,它的电离度也不超过0.5%。这说明HgCl2在溶液里主要是以分子形式存在的,只有少量的HgCl、Hg和Cl离子。过渡金属的盐在水溶液中常出现类似情况。  硫酸难溶于水,溶液中离子浓度很小,其水溶液不导电,似乎为非电解质。但熔融的硫酸钡却可以导电。硫酸钡难溶于水(20 ℃时在水中的溶解度为2.4×10-4 g),溶液中离子浓度很小,其水溶液不导电,但溶于水的那小部分硫酸钡却几乎完全电离(20 ℃时硫酸钡饱和溶液的电离度为97.5%)。因此,硫酸钡是电解质。碳酸钙和硫酸钡具有相类似的情况,也是电解质。从结构看,对其他难溶盐,只要是离子型化合物或强极性共价型化合物,尽管难溶,但溶的那部分是完全电离的,所以也是电解质。因为溶解是绝对的,不溶是相对的。没有绝对不溶的物质。  氧化铁的情况则比较复杂,Fe3+与OH-之间的化学键带有共价性质,它的溶解度比硫酸钡还要小;而溶于水的部分,其中少部分又有可能形成胶体,其余亦能电离成离子。但氢氧化铁也是电解质。  氨气不是电解质液氨也不是电解质液氨是纯净物,是处于液态的纯净物,不是溶解氨气在水中形成的水溶液-氨水,所以说即使液氨存在NH3+NH3=NH4+ + NH2-这种电离,它也不是电解质。氨水是混合物,也不是电解质(不能纳入电解质范畴),上面所说的是一水合氨。氯气水溶液能导电的原因是:氯气与水作用,生成HCl和HClO,而HCl和HClO都是电解质,在水溶液中可以发生电离产生阴阳离子使溶液能导电。其中HCl可以完全电离,是强电解质,HClO只能部分电离,是弱电解质。  注意:单质、混合物不管在水溶液中或熔融状态下是否能够导电,都不是电解质或非电解质。如所有的金属既不是电解质,也不是非电解质。因它们并不是化合物,不符合电解质的定义。

电解质 - 相关资讯

今日科技:AI发展出了自己的语言,电解质研究获重大突破! 今日科技:AI发展出了自己的语言,电解质研究获重大突破!

1、AI发展出了自己的语言 人类无法理解 据《大西洋月刊》网站报道,Facebook在实验中让两个AI聊天机器人互相对话...

【图】工学院郭少军课题组提出“蚁穴”结构固态电解质抑制锂枝晶新方法 【图】工学院郭少军课题组提出“蚁穴”结构固态电解质抑制锂枝晶新方法

  近日,能源和环境科学领域国际顶级刊物Energy amp; Environmental Science(影响因子=2...

【图】美科学家发明新型气态电解质 不畏极寒 【图】美科学家发明新型气态电解质 不畏极寒

  原标题:美科学家发明新型气态电解质 不畏极寒  虽然电动汽车具有零排放和能源利用率高的优点,但是它同样有很多令人质疑...

美科学家发明新型气态电解质 不畏极寒 美科学家发明新型气态电解质 不畏极寒

原标题:美科学家发明新型气态电解质 不畏极寒虽然电动汽车具有零排放和能源利用率高的优点,但是它同样有很多令人质疑的方面,...

跑者补水不等于只喝水 更要注重电解质平衡 跑者补水不等于只喝水 更要注重电解质平衡

对于跑者来说,补水非常关键,尤其是在夏季跑步。但是,补水并不只是简单的喝水。跑者在补水方面容易犯以下五个错误,需要及时纠...

石墨烯已成往事 液态电解质成为汽车电池技术的有力方向 石墨烯已成往事 液态电解质成为汽车电池技术的有力方向

美国普渡大学的科研人员开发了一种新型电池,可实现快充效果。该电池可为电动汽车和混合动力汽车快速充电,且不需要修建大规模充...

【图】石墨烯已成往事 液态电解质成为汽车电池技术的有力方向 【图】石墨烯已成往事 液态电解质成为汽车电池技术的有力方向

  美国普渡大学的科研人员开发了一种新型电池,可实现快充效果。该电池可为电动汽车和混合动力汽车快速充电,且不需要修建大规...

强电解质 强电解质

强电解质概念:在水溶液或熔融状态下完全电离出离子的电解质。电离程度:完全电离,不存在电离平衡。溶质微粒:只有离子。实例:...

弱电解质 弱电解质

弱电解质弱电解质是在水溶液里部分电离的电解质。弱电解质包括弱酸、弱碱、水与少数盐。不同的弱电解质在水中电离的程度是不同的...

惰性电解质 惰性电解质

基本资料

电解质 电解质

电解质是溶于水溶液中或在熔融状态下就能够导电(自身电离成阳离子与阴离子)的化合物。可分为强电解质和弱电解质。电解质不一定...

电解质紊乱 电解质紊乱

人体血浆中主要的阳离子是Na、K、Ca、Mg,对维持细胞外液的渗透压、体液的分布和转移起着决定性的作用;细胞外液中主要阴...

科技人气榜

01 2,4,6 2,4,6 热度:64020
02 骁龙800 骁龙800 热度:63268
03 AMD APU AMD APU 热度:51530
04 质量分数 质量分数 热度:49899
05 平台 平台 热度:25258
06 10 10 热度:24056
07 阿特拉津 阿特拉津 热度:18671
08 钓鱼网站 钓鱼网站 热度:17344

电解质 - 相关图片

投稿