光学

光学(optics)是物理学的重要分支学科。也是与光学工程技术相关的学科。狭义来说,光学是关于光和视见的科学,optics词早期只用于跟眼睛和视见相联系的事物。而今天常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到X射线和γ射线的宽广波段范围内的电磁辐射的产生、传播、接收和显示,以及与物质相互作用的科学,着重研究的范围是从红外到紫外波段。它是物理学的一个重要组成部分。光学是研究光的行为和性质的物理学科。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。

光学天体测量 光学3号 "菲涅尔"透镜光学助降系统 【图】雷蛇推出幻目灵蛇游戏鼠标 搭载7200DPI光学传感器 诺基亚智能手机将与蔡司光学技术独家合作(图) 诺基亚智能手机将与蔡司光学技术独家合作

基本资料

光学(optics)是物理学的重要分支学科。也是与光学工程技术相关的学科。狭义来说,光学是关于光和视见的科学,optics词早期只用于跟眼睛和视见相联系的事物。而今天常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到X射线和γ射线的宽广波段范围内的电磁辐射的产生、传播、接收和显示,以及与物质相互作用的科学,着重研究的范围是从红外到紫外波段。它是物理学的一个重要组成部分。光学是研究光的行为和性质的物理学科。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。 中文名称光学 外文名称optics

基本介绍

  光学(optics)是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。是物理学的一个分支,解释了光的现象及特性。

详细介绍

  光学的起源在西方很早就有光学知识的记载,欧几里得(Euclid,公元前约330~260)的反射光学(Catoptrica)研究了光的反射;阿拉伯学者阿勒·哈增(AI-Hazen,965~1038)写过一部光学全书,讨论了许多光学的现象。  光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起,这两个定律奠定了几何光学的基础。17世纪,望远镜和显微镜的应用大大促进了几何光学的发展。  光的本性(物理光学)也是光学研究的重要课题。微粒说把光看成是由微粒组成,认为这些微粒按力学规律沿直线飞行,因此光具有直线传播的性质。19世纪以前,微粒说比较盛行。但是,随着光学研究的深入,人们发现了许多不能用直进性解释的现象,例如干涉、衍射等,用光的波动性就很容易解释。於是光学的波动说又占了上风。两种学说的争论构成了光学发展史上的一根红线。  狭义来说,光学是关于光和视见的科学,optics(光学)这个词,早期只用于跟眼睛和视见相联系的事物。而今天,常说的光学是广义的,是研究从微波、红外线、可见光、紫外线直到X射线的宽广波段范围内的,关于电磁辐射的发生、传播、接收和显示,以及跟物质相互作用的科学。光学是物理学的一个重要组成部分,也是与其他应用技术紧密相关的学科。

分类介绍

高等物理光学分类

  (1)几何光学  (2)物理光学  (3)量子光学

初等物理分类

  (1)初中阶段:几何光学  (2)高中阶段:几何光学、物理光学  (3)说明:一般生活中提到的光学就是高中阶段的分类标准。

历史发展

  光学是一门有悠久历史的学科,它的发展史可追溯到2000多年前。  人类对光的研究,最初主要是试图回答“人怎么能看见周围的物体?”之类问题。约在公元前400多年(先秦的时代),中国的《墨经》中记录了世界上最早的光学知识。它有八条关于光学的记载,叙述影的定义和生成,光的直线传播性和针孔成像,并且以严谨的文字讨论了在平面镜、凹球面镜和凸球面镜中物和像的关系。自《墨经》开始,公元11世纪阿拉伯人伊本·海赛木发明透镜;公元1590年到17世纪初,詹森和李普希同时独立地发明显微镜;一直到17世纪上半叶,才由斯涅耳和笛卡儿将光的反射和折射的观察结果,归结为今天大家所惯用的反射定律和折射定律。  1665年,牛顿进行太阳光的实验,它把太阳光分解成简单的组成部分,这些成分形成一个颜色按一定顺序排列的光分布——光谱。它使人们第一次接触到光的客观的和定量的特征,各单色光在空间上的分离是由光的本性决定的。  牛顿还发现了把曲率半径很大的凸透镜放在光学平玻璃板上,当用白光照射时,则见透镜与玻璃平板接触处出现一组彩色的同心环状条纹;当用某一单色光照射时,则出现一组明暗相间的同心环条纹,后人把这种现象称牛顿环。借助这种现象可以用第一暗环的空气隙的厚度来定量地表征相应的单色光。  牛顿在发现这些重要现象的同时,根据光的直线传播性,认为光是一种微粒流。微粒从光源飞出来,在均匀媒质内遵从力学定律作等速直线运动。牛顿用这种观点对折射和反射现象作了解释。  惠更斯是光的微粒说的反对者,他创立了光的波动说。提出“光同声一样,是以球形波面传播的”。并且指出光振动所达到的每一点,都可视为次波的振动中心、次波的包络面为传播波的波阵面(波前)。在整个18世纪中,光的微粒流理论和光的波动理论都被粗略地提了出来,但都不很完整。  19世纪初,波动光学初步形成,其中托马斯·杨圆满地解释了“薄膜颜色”和双狭缝乾涉现象。菲涅耳于1818年以杨氏乾涉原理补充了惠更斯原理,由此形成了今天为人们所熟知的惠更斯-菲涅耳原理,用它可圆满地解释光的干涉和衍射现象,也能解释光的直线传播。  在进一步的研究中,观察到了光的偏振和偏振光的干涉。为了解释这些现象,菲涅耳假定光是一种在连续媒质(以太)中传播的横波。为说明光在各不同媒质中的不同速度,又必须假定以太的特性在不同的物质中是不同的;在各向异性媒质中还需要有更复杂的假设。此外,还必须给以太以更特殊的性质才能解释光不是纵波。如此性质的以太是难以想象的。1846年,法拉第发现了光的振动面在磁场中发生旋转;1856年,韦伯发现光在真空中的速度等于电流强度的电磁单位与静电单位的比值。他们的发现表明光学现象与磁学、电学现象间有一定的内在关系。  1860年前后,麦克斯韦的指出,电场和磁场的改变,不能局限于空间的某一部分,而是以等于电流的电磁单位与静电单位的比值的速度传播着,光就是这样一种电磁现象。这个结论在1888年为赫兹的实验证实。然而,这样的理论还不能说明能产生象光这样高的频率的电振子的性质,也不能解释光的色散现象。到了1896年洛伦兹创立电子论,才解释了发光和物质吸收光的现象,也解释了光在物质中传播的各种特点,包括对色散现象的解释。在洛伦兹的理论中,以太乃是广袤无限的不动的媒质,其唯一特点是,在这种媒质中光振动具有一定的传播速度。  对于像炽热的黑体的辐射中能量按波长分布这样重要的问题,洛伦兹理论还不能给出令人满意的解释。并且,如果认为洛伦兹关于以太的概念是正确的话,则可将不动的以太选作参照系,使人们能区别出绝对运动。而事实上,1887年迈克耳逊用乾涉仪测“以太风”,得到否定的结果,这表明到了洛伦兹电子论时期,人们对光的本性的认识仍然有不少片面性。    1900年,普朗克从物质的分子结构理论中借用不连续性的概念,提出了辐射的量子论。他认为各种频率的电磁波,包括光,只能以各自确定分量的能量从振子射出,这种能量微粒称为量子,光的量子称为光子。  量子论不仅很自然地解释了灼热体辐射能量按波长分布的规律,而且以全新的方式提出了光与物质相互作用的整个问题。量子论不但给光学,也给整个物理学提供了新的概念,所以通常把它的诞生视为近代物理学的起点。  1905年,爱因斯坦运用量子论解释了光电效应。他给光子作了十分明确的表示,特别指出光与物质相互作用时,光也是以光子为最小单位进行的。  1905年9月,德国《物理学年鉴》发表了爱因斯坦的“关于运动媒质的电动力学”一文。第一次提出了狭义相对论基本原理,文中指出,从伽利略和牛顿时代以来占统治地位的古典物理学,其应用范围只限于速度远远小于光速的情况,而他的新理论可解释与很大运动速度有关的过程的特征,根本放弃了以太的概念,圆满地解释了运动物体的光学现象。  这样,在20世纪初,一方面从光的干涉、衍射、偏振以及运动物体的光学现象确证了光是电磁波;而另一方面又从热辐射、光电效应、光压以及光的化学作用等无可怀疑地证明了光的量子性——微粒性。  1922年发现的康普顿效应,1928年发现的喇曼效应,以及当时已能从实验上获得的原子光谱的超精细结构,它们都表明光学的发展是与量子物理紧密相关的。光学的发展历史表明,现代物理学中的两个最重要的基础理论——量子力学和狭义相对论都是在关于光的研究中诞生和发展的。  此后,光学开始进入了一个新的时期,以致于成为现代物理学和现代科学技术前沿的重要组成部分。其中最重要的成就,就是发现了爱因斯坦于1916年预言过的原子和分子的受激辐射,并且创造了许多具体的产生受激辐射的技术。  爱因斯坦研究辐射时指出,在一定条件下,如果能使受激辐射继续去激发其他粒子,造成连锁反应,雪崩似地获得放大效果,最后就可得到单色性极强的辐射,即激光。1960年,西奥多·梅曼用红宝石制成第一台可见光的激光器;同年制成氦氖激光器;1962年产生了半导体激光器;1963年产生了可调谐染料激光器。由于激光具有极好的单色性、高亮度和良好的方向性,所以自1958年发现以来,得到了迅速的发展和广泛应用,引起了科学技术的重大变化。  光学的另一个重要的分支是由成像光学、全息术和光学信息处理组成的。这一分支最早可追溯到1873年阿贝提出的显微镜成像理论,和1906年波特为之完成的实验验证;1935年泽尔尼克提出位相反衬观察法,并依此由蔡司工厂制成相衬显微镜,为此他获得了1953年诺贝尔物理学奖;1948年伽柏提出的现代全息照相术的前身——波阵面再现原理,为此,伽柏获得了1971年诺贝尔物理学奖。自20世纪50年代以来,人们开始把数学、电子技术和通信理论与光学结合起来,给光学引入了频谱、空间滤波、载波、线性变换及相关运算等概念,更新了经典成像光学,形成了所谓“傅里叶光学”。再加上由于激光所提供的相乾光和由利思及阿帕特内克斯改进了的全息术,形成了一个新的学科领域——光学信息处理。光纤通信就是依据这方面理论的重要成就,它为信息传输和处理提供了崭新的技术。  在现代光学本身,由强激光产生的非线性光学现象正为越来越多的人们所注意。激光光谱学,包括激光喇曼光谱学、高分辨率光谱和皮秒超短脉冲,以及可调谐激光技术的出现,已使传统的光谱学发生了很大的变化,成为深入研究物质微观结构、运动规律及能量转换机制的重要手段。它为凝聚态物理学、分子生物学和化学的动态过程的研究提供了前所未有的技术。

研究内容

  我们通常把光学分成几何光学、物理光学和量子光学。

几何光学

  是从几个由实验得来的基本原理出发,来研究光的传播问题的学科。它利用光线的概念、折射、反射定律来描述光在各种媒质中传播的途径,它得出的结果通常总是波动光学在某些条件下的近似或极限。

物理光学

  是从光的波动性出发来研究光在传播过程中所发生的现象的学科,所以也称为波动光学。它可以比较方便的研究光的干涉、光的衍射、光的偏振,以及光在各向异性的媒质中传插时所表现出的现象。波动光学的基础就是经典电动力学的麦克斯韦方程组。波动光学不详论介电常数和磁导率与物质结构的关系,而侧重于解释光波的表现规律。波动光学可以解释光在散射媒质和各向异性媒质中传播时现象,以及光在媒质界面附近的表现;也能解释色散现象和各种媒质中压力、温度、声场、电场和磁场对光的现象的影响。

量子光学

  英文名称:quantum optics  量子光学是以辐射的量子理论研究光的产生、传输、检测及光与物质相互作用的学科。1900年普朗克在研究黑体辐射时,为了从理论上推导出得到的与实际相符甚好的经验公式,他大胆地提出了与经典概念迥然不同的假设,即“组成黑体的振子的能量不能连续变化,只能取一份份的分立值”。  1905年,爱因斯坦在研究光电效应时推广了普朗克的上述量子论,进而提出了光子的概念。他认为光能并不像电磁波理论所描述的那样分布在波阵面上,而是集中在所谓光子的微粒上。在光电效应中,当光子照射到金属表面时,一次为金属中的电子全部吸收,而无需电磁理论所预计的那种累积能量的时间,电子把这能量的一部分用于克服金属表面对它的吸力即作逸出功,余下的就变成电子离开金属表面后的动能。  这种从光子的性质出发,来研究光与物质相互作用的学科即为量子光学。它的基础主要是量子力学和量子电动力学。  光的这种既表现出波动性又具有粒子性的现象既为光的波粒二象性。后来的研究从理论和实验上无可争辩地证明了:非但光有这种两重性,世界的所有物质,包括电子、质子、中子和原子以及所有的宏观事物,也都有与其本身质量和速度相联系的波动的特性。

光学成就

对火的认识

  我国古代取火的工具称为“燧”,有金燧、木燧之分。金燧取火于日,木燧取火于木。根据我国古籍的记载,古代常用“夫燧”、“阳燧”(实际上是一种凹面镜,因用金属制成成,所以统称为“金燧”)来取火。古代人们在行军或打猎时,总是随身带有取火器,《礼记》中就有“左佩金燧”、“右佩木燧”的记载,表明晴天时用金燧取火,阴天时用木燧取火。阳燧取火是人类利用光学仪器会聚太阳能的一个先驱。讲到取火,古代还用自制的古透镜来取火的。公元前2世纪,就有人用冰作透镜,会聚太阳光取火。《问经堂丛书》、《淮南万毕术》中就有这样的记载:“削冰令圆,举以向日,以艾承其影,则火生。”我们常说,水火不兼容,但制成冰透镜来取火,真是一个奇妙的创造。用冰制成透镜是无法长期保存的,于是便出现用玻璃或玻璃来制造透镜。  《华严经》菩萨问明品 记载“勤首菩萨以颂答曰: 如钻燧求火,未出而数息,火势随止灭,懈怠者亦然。如人持日珠,不以物承影,火终不可得,懈怠者亦然”。

针孔成像和影的认识

  公元前4世纪,墨家就做过针孔成像的实验,并给予分析和解释。《墨经》中明确地写道:“景到(倒),在午有端,与景长,说在端。”这里的“午”即小孔所在处。这段文字表明小孔成的是倒像,其原因是在小孔处光线交叉的地方有一点(“端”),成像的大小,与这交点的位置无关。从这里也可以清楚看到,古人已经认识到光是直线行进的,所以常用“射”来描述光线径直向前。北宋的沈括在《梦溪笔谈》中也记述了光的直线传播和小孔成像的实验。他首先直接观察在空中飞动,地面上的影子也跟着移动,移动的方向与飞的方向相反。然后在纸窗上开一小孔,使窗外飞的影子呈现在窒内的纸屏上,沉括用光的直进的道理来解释所观察到的结果:“东则影西,西则影东”。墨家利用光的直线传播这一性质,讨论了光源、物体、投影三者的关系。《墨经》中写道:“景不徙,说在改为。”“光至,景亡。若在,尽古息。”说明影是不动的,如果影移,那是光源或物体发生移动,使原影不断消逝,新影不断生成的缘故。投影的地方,如果光一照,影子就会消失,如果影子存在,表明物体不动,只要物体不动,影子就始终存在于原处。墨家对本影、半影也作了解释。《墨经》中有这样的记载:“景二,说在重。”“景二,光夹。一,光一。光者,景也。”意思是一物有两种投影(本影、半影),说明它同时受到两个光源重复照射的结果(“说在者”,“光夹”)、一种投影,说明它只受一个光源照射,并且强调了光源与投影的联系(“光者,景也”)。与此相连,墨家还根据物和光源相对位置的变化,以及物与光源本身大小的不同来讨论影的大小及其变化。

对面镜的认识

  墨子对凹面镜、凸面镜和平面镜成像的原理也进行了比较系统的研究,已发现了凹面镜焦点的存在。如墨家对凹面镜作了深入的观察和研究,并在《墨经》中作了明确、详细的记载。“鉴低,景一小而易,一大而正,说在中之外、内。”“低”表示深、凹之意;放在“中之内”,得到的像是比物体大而正立的。虽然他尚把球心和焦点混淆在一起,但这些实验是世界上最早的光学实验,具有重大的科学意义。李约瑟曾把墨子光学与古希腊光学进行比较,指出墨子的光学研究“比我们任何所知的希腊为早”,“印度亦不能比拟”。  北宋沈括对凹面镜的焦距作了测定。他用手指置于凹面镜前,观察成像情况,发现随着手指与镜面距离的远近变化,像也发生相应的变化。在《梦溪笔谈》中作了记载:“阳燧面洼,以一指迫而照之则正,渐远则无所见,过此遂倒。”说明手指靠近凹面镜时,像的正立的,渐渐远移至某一处(在焦点附近),则“无所见”,表示没有像(像成在无穷远处);移过这段距离,像就倒立了。这一实验,既表述了凹面镜成像原理,同时也是测定凹面镜焦距的一种粗略方法。  墨家对凸透镜也进行了研究。《墨经》中写道:“鉴团,景一。说在刑之大。”“鉴团”即凹面镜,也称团镜。“景一”表明凸面镜成像只有一种。“刑”同形字,指物体,它总比像大。我们的祖先,利用平面镜能反射光线的特性,将多个平面镜组合起来,取得了有趣的结果。如《庄子·天下篇》的有关注解《庄子补正》中对此作了记载:“鉴以鉴影,而鉴以有影,两鉴相鉴,则重影无穷。”这样的装置,收到了“照花前后镜,花花交相映”的效果。《间经堂丛书》、《淮南万毕术》中记有“取大镜高悬,置水盆于其下,则见四邻矣。”表明很早就有人制作了最早的开管式“潜望镜”,能够隔墙观望户外的景物。  此外,汉代发明的透光镜,能够反射出铜镜背面的精美图像,是中国古代光学的一大发明,现在仍引起中外学者的关注。

对虹的认识

  虹是一种大气光学现象,从公元6世纪开始,我国古代对虹就有了比较正确的认识。唐初的孔颖达(574-648)曾概括了虹的成因,他认为“若云薄漏日,日照雨滴则虹生。”明确指出产生虹的3个条件,即云、日、“日照雨滴”。沉括对此也作过细致的研究,并作实地考察。在《梦溪笔谈选注》中写道:“是时新雨霁,见虹下帐前涧中。”予与同职扣涧观之,虹两头皆垂涧中。使人过涧,隔虹对立,相去数丈,中间如隔绡觳,自西望东则见;盖夕虹也。立涧之东西望,则为日所铄,都无所睹。”指出虹和太阳的位置正好是相对的,傍晚的虹见于东方,而对着太阳是看不见虹的。地虹有了认识之后,便可以人工造虹。8世纪中叶,唐代曾有过这样的试验:“背日喷呼水成虹霓之状”,表示背向太阳喷出小水珠,便能看到类似虹霓的情景。

相关著作

古代

  《光学》 作者:【古希腊】欧几里德  《光学》(Optics)是希腊文的第一本透视学,从12个假设(公设)出发推出61个命题.假设1是“人看到物体,是光线从眼睛出发射到所看的物体上去”.这是从柏拉图以来的传统观点.其中命题6是“处于平行位置,大小相同但距离不同的物体,在眼中看到的大小并不与远近成比例”.

现代

  《 光学原理——光的传播、干涉和衍射的电磁理论》(第七版),作者:(德)玻恩,(美)沃耳夫著,杨葭荪译  新版《光学原理》为有志于攀登光学高峰的年轻人提供了一架云梯,如果不是圣经的话;新版《光学原理》昭示人们,掌握基础理论才是发展和创新的根本,根深叶茂,本固枝荣。  ——中国科学院院士、中国光学学会理事长母国光  本书首次出版于1959年,其前身是诺贝尔奖得主马科斯·玻恩(Max Born)的Optik一书,目前的最新版本是1999年第七版。《光学原理》一书在国外被广泛称为“Born Wolf”已经销售超过30万册。事实上,每一个科班出身学习光学的人都研读过这本书并深受其影响。近半个世纪以来,“Born Wolf”一直是物理书架上必不可少的作品,并成为光学领域的奠基性教科书。

同名图书

书名

  《光学》

作者

  牛顿

内容简介

  为了区别于时下被广泛使用的“经典”一词,本书之称之为“科学元典”,本“经典”不通于歌迷们所说的经典”,也不于表演艺术家们朗诵的“科学经典名著”。受歌迷欢迎的流行歌曲所说的“经典”,实际上是时尚的东西,其含义与我们所说的代表传统的经典恰恰相反。表演艺术家们朗诵的“科学经典名著”多是表现科学家们的情感和生活态度的散文,甚至反映科学家生活的话剧台词,它们可能脍炙人口,是否属于人文领域里的经典姑且不论,但基本上没有科学内容。并非著名科学大师的一切言论或者是广为流传的作品都是科学经典。  这里所谓的科学元典,是指科学经典中最基本、最重要的著作,是在人类智识史和人类文明史上划时代的丰碑,是理性精神的载体,具有永恒的价值。  科学元典是科学史和人类文明史上划时代的丰碑,是人类文化的优秀遗产,是历经时间考验的不朽之作。它们不仅是伟大的科学创造的结晶,而且是科学精神、科学思想和科学方法的载体,具有永恒的意义和价值。

目录

  《光学》导读  爱因斯坦序  声明  声明Ⅰ  声明Ⅱ  第四版声明  第一编  第一部分  定义1-8  公理1-8  命题1-8  第二部分  命题1-11  第二编  第一部分 关于薄的透明物体的反射、折射和颜色的观察 ? ?

相关图书

    书 名: 光学  作 者:(印)加塔克   出版社: 清华大学出版社  出版时间: 2010-3-1  ISBN: 9787302222453  开本: 16开  定价: 57.00元

内容简介

  是西方大学最流行的基础光学教材之一,从写作内容到编排顺序都与国内基础光学教材较接近,比较符合国内基础光学的教学习惯,是一本非常合适的基础光学的双语教材。  不仅系统地介绍了光学知识,还为读者提供了许多光学发展背景,如第一章光学史内容丰富、精彩,不可多得。  包括传统光学教材的内容(如几何光学、干涉、衍射、偏振等),还增加了许多新内容,以体现近代光学的发展。  每部分最后都安排了非常全面的小结,利于读者在一阶段的学习之后,查漏补缺,巩固已学的知识。  将理论系统介绍与这些理论对于自然现象的解释和在工程实际应用进行了有机的结合。使读者不仅掌握了基础知识,还见识到了这些理论如何解释日常生活中的一些自然现象;最重要的是学到了如何将基础知识运用到工程技术中去的科学思路。

图书目录

  Preface  1 History of Optics  2 What is Light?  Part 1 Geometrical Optics  3 Fermat's Principle and Its Applications  4 Refraction and Reflection by Spherical Surfaces  5 The Matrix Method in Paraxial Optics  6 Aberrations  Part 2 Vibrations and Waves  7 Simple Harmonic Motion,Forced Vibrations and Origin of Refractive Index  8 Fourier Series and Applications  9 The Dirac Delta Function and Fourier Transforms  10 Group Velocity and Pulse Dispersion  11 Wave Propagation and the Wave Equation  12 Huygens'Principle and Ist Applications  Part 3 Interference  13 Superposition of Waves  14 Two Beam Interferenc by Division of Wavefront  15 Interference by Division of Amplitude  16 Multiple Beam Interferometry  17 Coherence  Part 4 Diffraction  18 Fraunhofer Diffraction:1  19 Fraunhofer Diffraction:2 and Fourier Optics  20 Fresnel Diffraction  21 Holography  Part 5 Electromagnetic Character of Light  Part 6 Photons  Part 7 Lasers Fiber Optics  Appendix  Name Index  Subject Index

光学 - 相关资讯

光学天体测量 光学天体测量

光学天体测量光学天体测量是天文学专有名词。来自中国天文学名词审定委员会审定发布的天文学专有名词中文译名,词条译名和中英文...

光学3号 光学3号

光学3号2009年11月28日,光学3号在位于日本南部鹿儿岛县的种子岛宇宙中心搭乘日本H2A运载火箭升空。卫星在发射约2...

"菲涅尔"透镜光学助降系统 "菲涅尔"透镜光学助降系统

菲涅尔透镜光学助降系统菲涅尔是一套透镜光学助降系统,它由4组灯光组成,主要是中央竖排的5个分段的灯箱,通过菲涅尔透镜发出...

【图】雷蛇推出幻目灵蛇游戏鼠标 搭载7200DPI光学传感器 【图】雷蛇推出幻目灵蛇游戏鼠标 搭载7200DPI光学传感器

  喜欢玩游戏的朋友想必少不了会购置一款高性能游戏鼠标,作为大家熟悉雷蛇今天发布一款拥有RGB元素并在底部加入灯带的游戏...

诺基亚智能手机将与蔡司光学技术独家合作(图) 诺基亚智能手机将与蔡司光学技术独家合作(图)

  蔡司将与诺基亚手机独家合作打造创新成像体验   再次致力于为诺基亚智能手机用户设立全新成像标准   芬兰埃斯波和德国...

诺基亚智能手机将与蔡司光学技术独家合作 诺基亚智能手机将与蔡司光学技术独家合作

美通社芬兰-埃斯波和德国-奥伯科亨2017年7月6日电:诺基亚手机的新家园 HMD Global和蔡司ZEISS今天联合...

【图】诺基亚智能手机将与蔡司光学技术独家合作 【图】诺基亚智能手机将与蔡司光学技术独家合作

   美通社芬兰-埃斯波和德国-奥伯科亨2017年7月6日电:诺基亚手机的新家园 HMD    Global和蔡司ZEI...

剃须美容新概念 雅萌 (YA-MAN)男士光学脱毛仪全新上市(图) 剃须美容新概念 雅萌 (YA-MAN)男士光学脱毛仪全新上市(图)

核心提示:雅萌(YA-MAN)男士光学脱毛仪使用的光波长区域更广,使用雅萌(YA-MAN)男士光学脱毛仪,使用男士光学脱...

家庭影院设计之光学设计 家庭影院设计之光学设计

——访影音专家、合升影音汇高级工程师 毛德芳 影院的有无,已是生活品质的象征。但并不是把音视频做好就能完成一间高逼格的家...

苹果为2018年预购1.5亿个光学滤光片 用于iPhone的3D感测模块 苹果为2018年预购1.5亿个光学滤光片 用于iPhone的3D感测模块

张军提到“iPhone 8 的 3D 感测模块已经可以量产了”。称 3D 感测“可用于面部识别,潜在地支持简单的手势识别...

交银国际:给予舜宇光学买入评级 目标价87港元 交银国际:给予舜宇光学买入评级 目标价87港元

交银国际发布报告称,预期产品均价和毛利率的实质性增长,是支持舜宇光学(02382-HK)17年上半年业绩强劲的主要动力。...

【图】交银国际:给予舜宇光学买入评级 目标价87港元 【图】交银国际:给予舜宇光学买入评级 目标价87港元

  交银国际发布报告称,预期产品均价和毛利率的实质性增长,是支持舜宇光学(02382-HK)17年上半年业绩强劲的主要动...

自然人气榜

01 重庆市气象局 重庆市气象局 热度:119687
02 面纱星云 面纱星云 热度:119628
03 生物活性 生物活性 热度:119518
04 聚合果 聚合果 热度:62702
05 蜡样芽孢杆菌 蜡样芽孢杆菌 热度:62335
06 明日叶 明日叶 热度:61662
07 寒温带 寒温带 热度:61287
08 中温带 中温带 热度:60764

光学 - 相关图片

投稿