椭圆形

椭圆形是由圆形变成的长圆形,比圆形扁。叶片中部宽而两端较狭,两侧叶缘成弧形,称为椭圆形叶。

椭圆形

基本资料

椭圆形是由圆形变成的长圆形,比圆形扁。叶片中部宽而两端较狭,两侧叶缘成弧形,称为椭圆形叶。 中文名称椭圆形 外文名称The oval 概念:专有名词 含意:圆锥曲线

基本介绍

  椭圆是一种圆锥曲线:如果一个平面切截一个圆锥面,且不与它的底面相交,也不与它的底面平行,则圆锥和平面交截线是个椭圆。  穿过两焦点并终止于椭圆上的线段 AB 叫做长轴。长轴是通过连接椭圆上的两个点所能获得的最长线段。穿过中心(两焦点的连线的中点)垂直于长轴并且终止于椭圆的线段 CD 叫做短轴。半长轴(图中指示为 a)是长轴的一半:从中心通过一个焦点到椭圆的边缘的线段。类似的,半短轴(图中指示为 b)是短轴的一半。  如果两个焦点重合,则这个椭圆是圆;换句话说,圆是离心率为零的椭圆。  图像,这里的 D 是带有A ?的特征值的对角矩阵,二者沿着主对角线都是正实数的,而 P 是拥有A ?的特征向量作为纵列的实数的酉矩阵。椭圆的长短轴分别沿着A ?的两个特征向量的方向,而两个与之对应的特征值分别是半长轴和半短轴的长度的平方的倒数。  椭圆可以通过对一个圆的所有点的 x 坐标乘以一个常数而不改变 y 坐标来生成。

几何性质

  1、范围:焦点在x轴上-a≤x≤a -b≤y≤b;焦点在y轴上-b≤x≤-b -a≤y≤a[1]  2、对称性:关于X轴对称,Y轴对称,关于原点中心对称。  3、顶点:(a,0)(-a,0)(0,b)(0,-b)  4、离心率:e=c/a 或 e=√1-b^2/a^2  5、离心率范围 0e1  6、离心率越大椭圆就越扁,越小则越接近于圆  7.焦点 (当中心为原点时)(-c,0),(c,0)或(0,c),(0,-c)

切线法线

  定理1:设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB切椭圆C于点P,且A和B在直线上位于P的两侧,则∠APF1=∠BPF2。  定理2:设F1、F2为椭圆C的两个焦点,P为C上任意一点。若直线AB为C在P点的法线,则AB平分∠F1PF2。

相关公式

面积公式

  S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长)。  或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长)。

周长公式

  椭圆周长没有公式,有积分式或无限项展开式。
  椭圆周长(L)的精确计算要用到积分或无穷级数的求和。如  L = ∫[0,π/2]4a * sqrt(1-(e*cost)sup2;)dt≈2π√((asup2;+bsup2;)/2) [椭圆近似周长],其中a为椭圆长半轴,e为离心率  椭圆离心率的定义为椭圆上焦距与长轴的比值,(范围:大于0 小于1)  椭圆的准线方程 x=±a^2/c

离心功率

  e=c/a(0e1),因为2a2c。离心率越大,椭圆越扁平;离心率越小,椭圆越接近于圆形。
  椭圆的焦准距:椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a^2/c) 的距离为b^2/c

焦值半径

  焦点在x轴上:|PF1|=a+ex |PF2|=a-ex(F1,F2分别为左右焦点)
  椭圆过右焦点的半径r=a-ex  过左焦点的半径r=a+ex  焦点在y轴上:|PF1|=a-ey |PF2|=a+ey(F1,F2分别为上下焦点)  椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,即|AB|=2*b^2/a

斜率公式

  过椭圆上x^2/a^2+y^2/b^2=1上一点(x,y)的切线斜率为 -(b^2)X/(a^2)y

三角面积

  若有一三角形两个顶点在椭圆的两个焦点上,且第三个顶点在椭圆上
  那么若∠F1PF2=θ,则S=(b^2)tan(θ/2)。

曲率公式

  K=ab/[(b^2-a^2)(cosθ)^2+a^2]^(3/2)

椭圆形 - 相关资讯

椭圆形 椭圆形

椭圆形是由圆形变成的长圆形,比圆形扁。叶片中部宽而两端较狭,两侧叶缘成弧形,称为椭圆形叶。

文化人气榜

01 玉妃媚史 玉妃媚史 热度:158702
02 四川大学图书馆 四川大学图书馆 热度:120147
03 华北理工大学 华北理工大学 热度:118294
04 浙江财经大学 浙江财经大学 热度:116913
05 计算机应用基础 计算机应用基础 热度:61890
06 少年jump 少年jump 热度:61635
07 杨梅节 杨梅节 热度:61538
08 湘潭大学兴湘学院 湘潭大学兴湘学院 热度:60489

椭圆形 - 相关图片

投稿